

Teaching/Exam Scheme

M.Sc. Sem. III

Sr. No.	Course Code	Category of course	Course title	Hours Per week		Per		Tota l con. hrs.	Cre dits	E	M	I	V	Total Marks
				L	P									
1	MC3201	Core Course	Organic Chemistry-III	3	-	3	3	70	30	-	-	100		
2	MC3202	Core Course	Organic Chemistry-IV	3	-	3	3	70	30	-	-	100		
3	MC3203	Core Course	Organic Chemistry - V	3	-	3	3	70	30	-	-	100		
4	MC3204	Core Course	Organic Chemistry – VI	3	-	3	3	70	30	-	-	100		
5	MC3205	Compulsory Elective	Green Chemistry	3	-	3	3	70	30	1	-	100		
6	MC3206	Compulsory Elective	Medicinal Chemistry	3	-	3	3	70	30	-	-	100		
7	MC3207	Core Course	Practicals in chemistry	-	18	18	9	-	-	60	140	200		
			Total	18	18	36	27	420	180	60	140	800		

SRICT Institute of Science & Research

MASTER OF SCIENCE

Course Code: MC3201

Course Name: Organic Chemistry-III

Semester: III

Type of course: Core Course

Prerequisite: Should have basic belonging about fundamentals of chemistry and components occurring in nature and belongs to general group of natural chemistry

Rationale: At the end of the course, students will have knowledge about chemistry of natural pigments, alkaloids, steroids, sex hormones, vitamins and terpenoids.

Teaching and Examination Scheme:

Teaching Scheme			Credits		Total			
L	T	P	С	Theory Marks		Practical Marks		Marks
				ESE (E)	PA (M)	ESE (V)	PA(I)	
3	0	0	3	70	30	-	-	100

Sr. No.									
	SECTION-A								
1	NATURAL PIGMENTS & PORPHYRINS DERIVATIVES General structure, Synthesis and Spectral properties. Synthesis of cryptopyrrole, Phytopyrrole, Opsopyrrole and Haemopyrrole and their carboxylic acid derivatives. Structural elucidation of Haemoglobin and Chlorophyll (Analytical evidences only)	08							
2	ALKALOIDS &TERPENOIDS Classification, structural elucidation of Morphine, Reserpine and Colchicine (Analytical evidences only) Classification, nomenclature and isolation Structure determination and synthesis of Farnesol, Zingiberene, Cadinene,	08							
3	STEROIDS & VITAMINS Introduction to Sterols: Structure determination of cholesterol and ergosterol (no synthesis), Introduction of Bile acids. Structure determination, Synthesis and biochemical functions of Vitamin A, Vitamins B1 and B2.	08							
	SECTION-B								
4	SEX HORMONES Classification of hormones: Structure and synthesis of Androgens, Oestrogens and Gestrogens. Name and structures of Adrenocorticalhormones, Partial synthesis of cortisone.	08							
5	ADVANCED CHEMISTRY OF CARBOHYDRATES Carbohydrates: Structures, Reactions at the anomeric centre, Reactions at the non-anomeric centre, protection-deprotection, chemical synthesis of oligosaccharides, chiral pool, Modification of carbohydrate moiety	06							

SRICT Institute of Science & Research

6	MODERN CONCEPTS OF ORGANIC CHEMISTRY:	10
	New Techniques and concepts in organic synthesis. (i)Combinatorial	
	synthesis (ii)Phase transfer catalysis (iii)Tandem synthesis (iv)Mosher's	
	method for configuration determination (v)Baldwin rules (vi)Kahne's	
	glycosidation	

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level	C Level		
10	10 15		10	10	10		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy) Reference Books:

- 1. Organic Chemistry, Vol. I & II (Sixth edition), I. L. Finar.
- 2. S.W. Pelletier, Chemistry of the Alkaloids, Van Nostrand Reinhold Co., New York
- **3.** K.W. Bentley, The Alkaloids, Vol. I., Interscience Publishers, New York (1957).
- 4. Chemistry of Organic Natural Products, Vol. I & II, O. P. Agrawal.
- **5.** Organic Chemistry of Natural Products, Vol. I & II, Chatwal.
- **6.** Organic Chemistry (5/e) by Morrison & Boyd.
- 7. Chemistry of Vitamins S. F. Dyke.
- 8. Natural Products Chemistry, Vol. I & II, K. Nakanishi.
- 9. Chemistry of Natural Products, N. R. Krishnaswamy.
- **10.** The Chemistry of Natural Products, K. W. Bentley. Vol. I V.

Course Outcomes: After completing the course students will be able to

Sr.	CO statement	Marks %
No.		weightage
CO-1	Identify the application and synthesis of natural pigments	20%
CO-2	Classify the various alkaloids and their properties	20%
CO-3	Discover the various demonstration of steroids and their	20%
	determination	2070
CO-4	Examine the sex hormones and their properties	10%
CO-5	Assess the evaluation of various vitamins and their uses	20%
CO-6	Organize the structural, determination and synthesis of	10%
	various terpenoids.	1070

- https://www.library.qmul.ac.uk/subject-guides/chemistry/useful-websites/
- https://blog.feedspot.com/chemistry_websites/

SRICT Institute of Science & Research

MASTER OF SCIENCE Course Code: MC3202

Course Name: Organic Chemistry-IV

Semester: III

Type of course: Core Course

Prerequisite: Should have knowledge about basics of reaction mechanism, fundamental

reagents and disconnection approach

Rationale: At the end of the course, Students will have knowledge about various molecular rearrangements, reaction mechanism, protecting groups and disconnection approach

Teaching and Examination Scheme:

Teaching Scheme Cred			Credits	Examination Marks				Total
L	T	P	С	Theory Marks		Practical N	I arks	Marks
				ESE (E)	PA (M)	ESE (V)	PA(I)	
3	0	0	3	70	30	-	-	100

Sr. No.	CONTENT	Tota l Hrs.
	SECTION-A	
1	MOLECULAR REARRANGEMENTS-I (A) Nucleophilic rearrangement on C-atom; (i) Expansion and contraction of rings/Demajnov rearrangement (ii) Benzil-benzilic acid rearrangement (B) Electrophilic rearrangement on C-atom; (i) Favorskii rearrangement (ii) Sommelet-Hauser rearrangement (iii) Neber rearrangement (C) Nucleophilic rearrangement on N-atom (i) Schmidt rearrangement (ii) Curtius rearrangement	08
2	MOLECULAR REARRANGEMENTS-II (A) Aromatic rearrangements: (i) Jacobsen rearrangement (ii) Orton rearrangement (iii) Hoffmann-Martius rearrangement (iv) Fischer- Hepp rearrangement. (B) Rearrangement involving migration from oxygen to ring: Fries rearrangement (ii) Claisen rearrangement	08
3	ASYMMETRIC SYNTHESIS: Principles and applications of asymmetric synthesis: Chiral auxiliaries, methods of asymmetric induction – substrate, reagent and catalyst controlled reactions stereoselectivity in cyclic compounds, enantioselectivity, diastereo-selectivity, Methods of determination of enantiomer purity, polarimeterenatiomeric and diastereomeric excess,	08

SRICT Institute of Science & Research

	stereoselectivealdol reactions. Cram's rule, FelkinAnh rule, Cram's chelate model, asymmetric epoxidation and asymmetric dihydroxylation.	
	SECTION-B	
4	PROTECTING GROUPS Need of protecting groups – Protection of alcohols, Carbonyl, Carboxylic acid and amino groups, Synthetic equivalent groups and examples on transformations	08
5	DISCONNECTION APPROACH-I (A) Introduction to disconnection, Concept of synthon, Synthetic equivalent, Functional group interconversion (B) One group disconnection: Disconnection and synthesis of alcohols, olefins, simple ketones, acids and its derivatives	08
6	 DISCONNECTION APPROACH-II (A) Two groups disconnection: Disconnections in 1,3-dioxygenated skeletons, preparation of β-hydroxy carbonyl compounds, α,β-unsaturated carbonyl compounds, 1,3-dicarbonyls, 1,5-dicarbonyls (B) Pericyclic reactions: Disconnections based on Diels-Alder reaction and electrocyclic reaction: Its use in organic synthesis 	08

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level	C Level		
10	15	15	10	10	10		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

- **1.** Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Organic Chemistry (5/e) by Morrison & Boyd (Prentice Hall).
- **3.** Advanced Organic Chemistry by Carey & Sundberg (3rd edition).
- **4.** A Guide Book to Mechanism in Organic Chemistry, Peter Sykes, Longman.
- 5. Organic chemistry 2nd ed. Jonathan clayden, Nick Greeves, Stuart Warren.
- **6.** Reaction Mechanism and Reagents in Organic Chemistry by C. R. Chatwal (Himalaya Publishing House, Bombay, 1987).
- 7. Reaction Mechanism in Organic Chemistry by S. M. Mukherji and S. P. Singh(McMillan India Ltd., 1976)
- **8.** Advance Organic Chemistry, Reaction Mechanism and Structure by Jerry March,4th ed. John Wiley & Sons, 1992
- **9.** Some modern methods of organic synthesis W. Carruthers (Cambridge)
- **10.** Organic Synthesis, Jagdamba Singh & L.D.S. Yadav, 6th edition, Pragati Prakashan
- **11.** Designing Organic Synthesis A Programmed Introduction to the Synthon Approach, Stuart Warren, John Wiley & Sons (1994)

SRICT Institute of Science & Research

Course Outcomes: After completing the course students will be able to

Sr. No.	CO statement	Marks % weightage
CO-1	Collect the various set of molecular rearrangement to understand fundamental set of reaction	20%
CO-2	Classify molecular rearrangement according to the various application	20%
CO-3	Develop the synthesis and application of various carbohydrates	20%
CO-4	Analyze the properties of protecting groups for the various functional groups	10%
CO-5	Evaluate the disconnection approach for primary set of reaction	20%
CO-6	Collect the disconnection approach for the secondary set of reaction	10%

- https://www.library.qmul.ac.uk/subject-guides/chemistry/useful-websites/
- https://blog.feedspot.com/chemistry_websites/

SRICT Institute of Science & Research

MASTER OF SCIENCE Course Code: MC3203

Course Name: Organic Chemistry-V

Semester: III

Type of course: Core Course

Prerequisite: Should have knowledge about fundamental of organic chemistry, photo

chemistry and reaction mechanism.

Rationale: At the end of the course, Students will have knowledge about various name

reaction, photochemistry, organo-metallic compounds and ring synthesis

Teaching and Examination Scheme:

Teaching Scheme Credits			Examination Marks					
L	T	P	С	Theory Marks		Practical N	I arks	Marks
				ESE (E)	PA (M)	ESE (V)	PA(I)	
3	0	0	3	70	30	-	-	100

	1
	Hrs.
SECTION-A	
NAME REACTIONS-I	08
General nature, method, mechanism and synthetic applications of the	
following reactions;	
· · · · ·	
	08
` , <u> </u>	
· /	
	08
·	
• • •	
and its application.	
SECTION-B	l
	NAME REACTIONS-I General nature, method, mechanism and synthetic applications of the following reactions; (i)Ugi reaction (ii)Noyori reaction (iii)Wittig reaction (iv)Peterson olefination reaction (v)Stille reaction(vi) Negeshi reaction (vii) Kumada reaction (viii)Hiyama reaction NAME REACTIONS-II General nature, method, mechanism and synthetic applications of the following reactions; (i) Ene recation (ii) Staudinger reaction (iii) Corey- Fuchs reaction (iv)Ritter reaction (v) Mcmurry reaction (vi) Michael addition (vi) Shapiro reaction (vii) Eschenmore fragmentation (viii) Passerini reaction PHOTOCHEMISTRY Photochemical reactions, Principle of energy transfer, electronic excitation(Janlonskidiagrame), Photosensitization, Photochemistry of carbonyl compounds, Norrish type-I and II, reaction of cyclic ketones, Peterno-Buchi reaction, Di-π methane rearrangement, Dinone photochemistry, Cis-trans Isomerisation, Photochemistry of conjugated dienes, photo rearrangement. Barton reaction. Fluorescence chemistry and its application.

SRICT Institute of Science & Research

4	RING SYNTHESIS	08
	Introduction to ring synthesis	
	(A) Synthesis of saturated heterocycles:	
	Synthesis of 3 and 4 membered rings	
	(B)Heterocycles in organic synthesis:	
	Synthesis of alkanes and cycloalkanes from thiophene, Synthesis of	
	alkenes and cycloalkenes from pyridines, Synthesis of Aromatic	
	compounds from pyrilium salts, pyridazine, thiophenes and furan	
5	ORGANOMETALLIC COMPOUNDS AND THEIR	10
	APPLICATIONS-I	
	Carbon-metal bonds in organometallic compounds, Synthesis and	
	applications of Try carbonyl nickle ferrocene, Titanium hexacarbonyl, Iron	
	pentacarbonyl, Chromium hexacarbonyl, Organolithium, Organozincand	
	Lithium diorganocuprate.	
6	ORGANOMETALLIC COMPOUNDS AND THEIR	06
	APPLICATIONS-II	
	Basic concept of organoboranes, Preparation of organoboranes,	
	Stereochemistry of hydroboration, Mechanism of hydroboration –	
	oxidation, Synthetic applications	

Suggested Specification table with Marks (Theory):

	Distribution of Theory Marks								
R Level	U Level	A Level	N Level	E Level	C Level				
10	15	15	10	10	10				

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E:

Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

- **1.** Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Organic Chemistry (5/e) by Morrison & Boyd (Prentice Hall).
- **3.** Advanced Organic Chemistry by Carey & Sundberg (3rd edition).
- **4.** A Guide Book to Mechanism in Organic Chemistry, Peter Sykes, Longman.
- 5. Organic chemistry 2nd ed. Jonathan clayden, Nick Greeves, Stuart Warren.
- **6.** Reaction Mechanism and Reagents in Organic Chemistry by C. R. Chatwal (Himalaya Publishing House, Bombay, 1987).
- 7. Reaction Mechanism in Organic Chemistry by S. M. Mukherji and S. P. Singh(McMillan India Ltd., 1976)
- **8.** Organic Synthesis, Jagdamba Singh & L.D.S. Yadav, 6th edition, Pragati Prakashan
- **9.** Advance Organic Chemistry, Reaction Mechanism and Structure by Jerry March,4th ed. John Wiley & Sons, 1992
- **10.** Some modern methods of organic synthesis W. Carruthers (Cambridge)
- **11.** Strategic Applications of named reactions in organic synthesis-Laszlo Kurti andBarbara Czako
- 12. Organometallic Chemistry by P. L. Pauson (Edward Arnold, 1968).
- **13.** Principles of Organometallic Chemistry by Coats, Green, Powell & Wade (Chapman and Hall, 1977)

Course Outcomes: After completing the course students will be able to

Sr. No.	CO statement	Marks % weightage
CO-1	Describe the name reaction based on one pot synthesis	20%
CO-2	Explain the name reaction of alkene synthesis	20%
CO-3	Develop the understanding of organic photochemicalreaction	20%
CO-4	Deduce the ring synthesis for the use of organic application	10%
CO-5	Examine the organometallic reagent for the various synthetic chemistry	20%
CO-6	Categories the organometallic compound for different reaction	10%

- https://www.library.qmul.ac.uk/subject-guides/chemistry/useful-websites/
- https://blog.feedspot.com/chemistry_websites/

SRICT Institute of Science & Research

MASTER OF SCIENCE Course Code: MC3204

Course Name: Organic Chemistry-VI

Semester: III

Type of course: Core Course

Prerequisite: Should have knowledge about the fundamental; of heterocyclic

compound, physical-organic chemistry and structural reactivity

Rationale: At the end of the course, Students will have knowledge about brief of heterocyclic compounds, principle of structural reactivity and various organic reagents

Teaching and Examination Scheme:

Teac	hing S	cheme	Credits		Total			
L	T	P	С	Theory Marks Practical Marks				Marks
				ESE (E)	PA (M)	ESE (V)	PA(I)	
3	0	0	3	70	30	-	-	100

CONTENT	Total Hrs.
	1115.
SECTION-A	
HETEROCYCLIC CHEMISTRY-I	08
(A) Nomenclature of Heterocycles:	
Hantzsch-Widman nomenclature systems for monocyclic and	
, , , , , , , , , , , , , , , , , , , ,	
1 -	
` '	
Benzopyrazole, Benzimidazole	
HETEROCYCLIC CHEMISTRY-II	08
(A) Five and six membered heterocycles with more than two hetero	
atoms: Synthesis, reactivity, aromatic character and importance of	
following heterocycles:1,2,3- triazole, 1,2,4-triazole, 1,2,4-oxadiazole	
1,3,4-oxadiazole, 1,2,5-oxadiazole	
Synthesis, reactivity, aromatic character and importance of	
followingheterocyclic Rings: Quinoline, Isoquinoline, Cinnoline,	
Quinoxaline, Phthalazine, Naphthyridine, Phenoxazine	
	SECTION-A HETEROCYCLIC CHEMISTRY-I (A) Nomenclature of Heterocycles: Hantzsch-Widman nomenclature systems for monocyclic and fusedheterocycles and bridged heterocycles (B) Five and six membered heterocycles with two hetero atoms: Synthesis, reactivity, aromatic character and importance of following heterocyclic rings: Oxazole, Thiazole, Pyrazole, Imidazole, Pyridazine, Pyrimidine, Pyrazine (C) Condensed five membered heterocycles: Synthesis, reactivity, aromatic character and importance of following heterocyclic Rings: Benzoxazole, Benzthiazole, Benzopyrazole, Benzimidazole HETEROCYCLIC CHEMISTRY-II (A) Five and six membered heterocycles with more than two hetero atoms: Synthesis, reactivity, aromatic character and importance of following heterocycles:1,2,3- triazole, 1,2,4-triazole, 1,2,4-oxadiazole 1,3,4-oxadiazole, 1,2,5-oxadiazole (B) Condensed six membered heterocycles: Synthesis, reactivity, aromatic character and importance of followingheterocyclic Rings: Quinoline, Isoquinoline, Cinnoline,

SRICT Institute of Science & Research

3	PRINCIPLES OF REACTIVITY	08
3		Vo
	Mechanistic significance of entropy, enthalpy and Gibb's free	
	energy, Arrhenius equation, Transition state theory, Usages of	
	activation parameters, Hammond's postulate, Bell-Evans-Polanyi	
	principle, Curtian-Hammet principle, potential energy diagrams,	
	Mercs theory of electron transfer, Reactivity and selectivity	
	principles.	
	SECTION-B	
4	STRUCTURAL EFFECT ON REACTIVITY	08
	Linear free energy relationships (LPER), The Hammet equation,	
	substituent constants, theories of substituent effects, Interpretation of	
	б- values, Reaction constant, positive and negative deviation from	
	Hammet equation, Taft equation, Solvent effect	
5	REAGENTS FOR ORGANIC SYNTHESIS-I	08
	Introduction, Preparation and Industrial Applications of the following:	
	(i)Grubbs 1st and 2nd generation catalyst (ii) N,N-	
	dicyclohexylcarbodiimide (DCC) (iii) Gilman's reagent (iv) LDA (v)	
	1,3 – dithane (umpolung synthesis) (vi) Fetizon's reagent (vii)	
	Lemieux (viii) Lemieux–Johnson reagent (ix) Merrifield resin.	
6	REAGENTS FOR ORGANIC SYNTHESIS-II	08
U	Introduction, Preparation and Industrial Applications of the	UO
	following, (i)n- butyl lithium (ii)K ₃ Fe(CN) ₆ and DMSO	
	(iii)Diazomethane (iv) Polyphosphoric acid (v) DIBAL reagent (vi)	
	Von Rudloff reagent (vii) Woodward and prevost hydroxylation	
	(viii) Vaskas catalyst (ix) DEAD reagent	

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks								
R Level	R Level U Level A Level N Level E Level C Level							
10	15	15	10	10	10			

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E:

Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

- **1.** Advanced Organic Chemistry-Reactions, Mechanism and Structure, Jerry March, John Wiley.
- 2. Organic Chemistry (5/e) by Morrison & Boyd (Prentice Hall).
- **3.** Advanced Organic Chemistry by Carey & Sundberg (3rd edition).
- **4.** A Guide Book to Mechanism in Organic Chemistry, Peter Sykes, Longman.
- 5. Organic chemistry 2nd ed. Jonathan clayden, Nick Greeves, Stuart Warren.
- **6.** Reaction Mechanism and Reagents in Organic Chemistry by C. R. Chatwal (Himalaya Publishing House, Bombay, 1987).
- **7.** Reaction Mechanism in Organic Chemistry by S. M. Mukherji and S. P. Singh(McMillan India Ltd., 1976)
- 8. Organic Synthesis, Jagdamba Singh & L.D.S. Yadav, 6th edition, Pragati P
- **9.** Advance Organic Chemistry, Reaction Mechanism and Structure by Jerry March,4th ed. John Wiley & Sons, 1992

SRICT Institute of Science & Research

- **10.** Some modern methods of organic synthesis W. Carruthers (Cambridge)
- 11. Heterocyclic Chemistry- J A Joule and Smith
- 12. Heterocyclic Chemistry-II- R R Gupta, M Kumar, V Gupta, Springer (India) pvt
- **13.** Heterocyclic Chemistry, 4th Edition by J. A. Joule & K. Mills, Published by Chapman & Hall (1995)
- **14.** Principles of modern heterocyclic chemistry, Edited by Leo A. Paquette, Published by Pearson Benjamin Cummings (1968)
- **15.** Heterocyclic Chemistry, 3rd Edition by Thomas L. Gilchrist, Published by Prentice Hall (1997)
- **16.** The Structure & Reactions of Heterocyclic Compounds, Edited by Michael Henry Palmer, Published by Edward Arnold (1967)
- **17.** Heterocyclic chemistry by V. K. Ahluwalia, Narosa publishing house "Analytical Chemistry" by Gary D. Christian, 6th Edition, John Wiley and Sons Inc. New Jersey.

Course Outcomes: After completing the course students will be able to

Sr.	CO statement	Marks %
No.		weightage
CO-1	Collect the basic information of heterocyclic compounds	20%
CO-2	Decode the various synthesis and application of heterocyclic compounds	20%
CO-3	Apply the principle of structural reactivity to organic molecules	20%
CO-4	Calculate the various principle of structural reactivity	10%
CO-5	Evaluate the use of various set of advanced reagents for synthesis	20%
CO-6	Organize the advanced reagents for organic synthesis	10%

- https://www.library.qmul.ac.uk/subject-guides/chemistry/useful-websites/
- https://blog.feedspot.com/chemistry_websites/

SRICT Institute of Science & Research

MASTER OF SCIENCE Course Code: MC3205

Course Name: Green Chemistry

Semester: III

Type of course: Core Course

Prerequisite: Fundamental knowledge of chemistry and environmental chemistry.

Rationale: Designed of chemical products and processes that reduce or eliminate the use and generation of hazardous substances. Created awareness for reducing waste, minimizing energy consumption in organic synthesis. Explain the techniques of green synthesis in organic reactions.

Teaching and Examination Scheme:

Teac	Teaching Scheme Credits			Examination Marks				
L	T	P	С	Theory Marks Practical Marks			Marks	
				ESE (E)	PA (M)	ESE (V)	PA(I)	
3	0	0	3	70	30	-	-	100

Sr. No.	CONTENT	Total Hrs.
	SECTION-A	
1	INTRODUCTION TO GREEN CHEMISTRY AND PRINCIPLES OF GREEN CHEMISTRY Defining Green Chemistry. Need for Green Chemistry. Goals of Green Chemistry. Limitations/ Obstacles in the pursuit of the goals of Green Chemistry. Twelve principles of Green Chemistry with their explanations.	08
2	DESIGNING A GREEN CHEMICAL SYNTHESIS Designing a Green synthesis using these principles: prevention of waste/by products; maximum incorporation of the materials used in the process into the final products, atom economy, and calculation of atom economy of the rearrangement, addition, substitution and eliminationreactions.	08
3	GREEN SYNTHESIS/REACTION Green starting materials, Green reagents, reaction conditions, Green catalysis and Green synthesis- Real world cases (Traditional processes and green ones) Synthesis of Ibuprofen, Adipic acid, teriphthalic acid etc. SECTION-B	08
		0.6
4	GREEN SOLVENTS: SCF, ILs, DES Supercritical fluids, water as a solvent for organic reactions, ionic liquids, fluorous biphasic solvent, PEG, solvent less processes, immobilized solvents and how to compare greenness of solvents, deep eutectic solvents.	06

SRICT Institute of Science & Research

5	ENERGY AS IMPORTANT TOOL FOR CHEMICAL	10
	REACTIONS Economy of reaction and energy, Alternative sources of energy: (a) Microwave assisted synthesis: Introduction, set up, mechanism and example of microwave assisted reactions in water, microwave assisted reactions in organic solvents. (b) Ultrasonic assisted synthesis:	
	Introduction, set up, mechanism and examples.	
6	FUTURE TRENDS IN GREEN CHEMISTRY	08
	Oxidation reagents and catalysts, Processes involving solid catalysts –	
	zeolites, ion exchange resins, Polymer supported reagents, green	
	oxidations using TAML catalyst, membrane reactors. Green chemistry in	
	material science, green nanotechnology. Proliferation of solvent less	
	reactions; Green chemistry in sustainable development.	

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks					
R Level	U Level	A Level	N Level	E Level	C Level
10	15	15	10	10	10

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Reference Books:

- 1. Ahluwalia, V. K., & Kidwai, M. (2012). New Trends in Green Chemistry (II Edition). Germany: Kluwer Academic Publisher.
- 2. Anastas, P. T., & Warner, J. C. (1998). Green Chemistry: Theory and Practice.Oxford: Oxford University Press.
- 3. Matlack, A. S. (2001). Introduction to Green Chemistry. New York: Marcel Dekker.
- 4. Cann, M. C., & Connely, M. E. (2000). Real-World cases in Green Chemistry. Washington: American Chemical Society.
- 5. Ryan, M. A., & Tinnesand, M. (2002). Introduction to Green Chemistry, Washington: American Chemical Society.
- 6. Lancaster, M. (2010). Green Chemistry: An Introductory Text (II Edition). Cambridge: RSC Publishing.

Course Outcomes: After completing the course students will be able to

Sr. No.	CO statement	Marks % weightage
CO-1	Gain knowledge about the concept of Green chemistry.	20%
CO-2	Understand the basics of Medicinal chemistry.	20%
CO-3	Analyze the 12 principles of Green chemistry as well as the tools of Green chemistry.	20%
CO-4	Apply how to evaluate a reaction or process and determine "Greener" alternatives.	10%
CO-5	Focus on the application of greener routes to improve industrial processes and to produce important products.	20%

CO-6	Evaluate the greener synthetic pathway to produce	10%	
	pharmacological compounds.		

- https://www.library.qmul.ac.uk/subject-guides/chemistry/useful-websites/
- https://blog.feedspot.com/chemistry_websites/

SRICT Institute of Science & Research

MASTER OF SCIENCE Course Code: MC3206

Course Name: Medicinal Chemistry

Semester: III

Type of course: Medicinal Chemistry

Prerequisite: Should have basic knowledge about uses of medicinal chemistry its collaboration with tradition chemistry.

Rationale: At the end of the course, students will have knowledge about various theories related to the medicinal chemistry, application of various medicinal synthetic products and their synthesis.

Teaching and Examination Scheme:

r	Teac	hing S	cheme	Credits	Examination Marks				Total
	L	T	P	С	Theor	y Marks	Practical N	I arks	Marks
					ESE (E)	PA (M)	ESE (V)	PA(I)	
	3	0	0	3	70	30	-	-	100

Sr. No.	CONTENT	Tota l Hrs.			
	SECTION-A				
1	INTRODUCTION TO MEDICINAL CHEMISTRY History of Medicinal Chemistry, Classification of drugs, Important Terminology used in Medicinal Chemistry, Pharmacokinetics: Introduction to drug absorption, disposition, drug metabolism, elimination, important pharmacokinetic parameters in defining drugdisposition and in therapeutics, mention of uses of pharmacokinetics in drug development process, concept of pro drug and soft drugs.	10			
2	PHARMACODYNAMICS Introduction, principles of drug action, mechanisms of drug action, introduction to the concept of receptors and drug receptor interactions, Dose-response relationships, drug potency and efficacy, combined effect of drugs.	08			
3	ANTIPYRETIC ANALGESICS AND NSAIDS AGENTS General classification of Antipyretic Analgesics, Narcotic Analgesics and Non-Steroidal Anti-Inflammatory Drugs, Structural variations in Morphine, Morphan and 4-Phenylpiperidine Analogues. Opioid Receptors (Name only), Limitations of Opoids, Synthesis and therapeutic uses of only the following: Meperidine (Pethidine), Ibuprofen, Meclofenamate sodium, Oxyphenbutazone, Diclofenac Sodium, Mefanamic acid.	12			
	SECTION-B				

SRICT Institute of Science & Research

4	ANTIMALARIAL AND ANTITUBERCULOSIS DRUGS	10	
	Antimalarials: Modern chemotherapy of malaria, 4-amino and 8-amino		
	quinolins, 9-amino acridine. Synthesis of mefloquines, chloroquine,		
	primaquine and daraprim. Mode of action of antimalarial agents SAR of		
	antimalarial agents Anti tuberculosis: Synthesis of only the following		
	drugs: Isoniazid (INH), Ethionamide, Ethambutol, DDS (Dapsone).		
5	ANTIBIOTICS	10	
	Introduction, classification. a) β -lactam antibiotics: penicillin, Classification (early, resistant, broad spectrum, broad spectrum,adverse effects of penicillins.SAR of penicillin, Synthesis: ampicillin, pivampicillins, b) cephalosporins: Classification and SAR Synthesis: cephalexin, 7- amino cephalosporonic acid, c) tetracyclines: introduction and SAR, Synthesis: methacycline, doxycycline.		
6	PSYCHOACTIVE DRUGS	10	
	(i) General anesthetics:		
	General classification and Structural variations		
	(ii) Local Anesthetics:		
	General classification and SAR		
	(iii) Sedatives and Hypnotics: General classification, Structural variations and mode of action		
	Synthesis and therapeutic uses of only the following: Verapamil,		
	Methyldopa, Atenolol, Lisinopril, Losartan		
	iviculyidopa, Atcholoi, Lishiopin, Losartan		

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks					
R Level	U Level	A Level	N Level	E Level	C Level
10	15	15	10	10	10

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E:

Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

- 1. Burger's Medicinal Chemistry and Drug Discovery (5/e), 1997, Vol. 1, 2, 3,
- 4,5,Edited by ManFred E. Wolff (John Wiley & Sons, inc., New York).
- 2. Principles of Medicinal Chemistry, Vol. I & II (5/e), by S. S. Kadam, K. R. Mahadik, K.
- 3. Principles of Medicinal Chemistry by William O. Foye (ed.), Lea and Febiye
- 4. Wilson and Gisvold's Text-book of Organic Medicinal and Pharmaceutical Chemistry (5/e, 1982) by Robert F. Doerge (J. B. Lippincott Company, Philadelphia/Toppan Co. Ltd
- 5. Essential of Medicinal Chemistry (2/e) by Andrejus Korolkovas (A Wiley IntersciencePublication, 1988, John Wiley & Sons, Canada).
- 6. Medicinal Chemistry by Ashutoshkar (Wiley Eastern Ltd., 1993).
- 7. The Pharmaceutical Basis of Therapeutics by Goodman and Gilman (The Macmillan
- 8. The Organic Chemistry of Drug Synthesis, Vol. I, II & III (1980), Ed. By D. Lednicer and
- A. Mitscher (John Wiley and Sons, New York).
- 9. Topics in Medicinal Chemistry, Vol. I & II by Rabinowitz and Myerson (Editor)

SRICT Institute of Science & Research

(Interscience, 1968).

- 10. Adhunik Sanshleshit Aushodhonu Rasayanvighyan, Dr. Anamik Shah, UniversityGranth
- 11. Medicinal Chemistry, D. Sriram and P. Yogeeswari, 1st edi., Pearson Education,
- 12. Handbook of pharmaceutical chemicals by Dr. A. R. Shenoy and Dr. V. R. ShenoyPublishing Co., 15-Yogesh, Hingwala Lane, Ghatkopar (East) Mumbai.
- 13. Fundamentals of Medicinal Chemistry by G Thomas.

Course Outcomes: After completing the course students will be able to

Sr. No.	CO statement	Marks % weightage
CO-1	Examine the terminology of medicine.	20%
CO-2	Discuss the action of medicine and its mechanism.	20%
CO-3	Assess study about different drugs.	20%
CO-4	Inspect uses of antimalarial and antituberculosis drugs.	10%
CO-5	Explain the classification of antipyretic drugs.	20%
CO-6	Create approach for medicinal properties	10%

- https://www.library.qmul.ac.uk/subject-guides/chemistry/useful-websites/
- https://blog.feedspot.com/chemistry_websites/

SRICT Institute of Science & Research

MASTER OF SCIENCE

Course Code: MC3207

Course Name: Practicals in chemistry

Semester: III

Type of course: Core Course

Prerequisite: Should have knowledge about basic laboratory safety, use of chemicals,

handling of chemicals, use of instruments

Rationale: At the end of the course, Students will have knowledge about

Teaching and Examination Scheme:

Teac	ching S	cheme	Credits	Examination Marks				Total
L	T	P	С	Theor	y Marks	Practical N	A arks	Marks
				ESE (E)	PA (M)	ESE (V)	PA(I)	
-	-	18	9	-	-	140	60	200

Content:

Sr.	CONTENT	Tota
No.		l
		Hrs.
	SECTION-A	
1	Organic Preparation-I	60
2	Green Synthesis-I	36
3	Organic Estimation-I	48
	SECTION-B	
4	Organic Preparation-II	60
5	Green Synthesis-II	30
6	Determination structure by IR, NMR and Mass Spectra	54

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks					
R Level	U Level	A Level	N Level	E Level	C Level
10	15	15	10	10	10

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E:

Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

SRICT Institute of Science & Research

Reference Books:

- 1. A text book of practical organic chemistry A. I. Vogel
- 2. Practical organic Chemistry Mann and Saunders
- **3.** Comprehensive Practical Organic Chemistry: Preparations and Quantitative Analysis V K Ahluwalia & R. Aggarwal Universities Press.
- **4.** An Advanced Course in Practical Chemistry, A.K. Nad, B. Mahapatra, A. Ghosal, New Central Book Agency, 2004.
- **5.** Analytical Chemistry Practice, John H. Kennedy, Saunders College Publishing, Second Edition 1990.
- **6.** Spectroscopy of Organic Compounds, P. S. Kalsi, 5th edition (New Age International Publishers)
- 7. Elementary Organic Spectroscopy: Principles and Chemical applications (revisededition), Y. R. Sharma (S. Chand Publishing)

Course Outcomes: After completing the course students will be able to

Sr. No.	CO statement	Marks % weightage
CO-1	Describe the various synthesis of organic molecules.	20%
CO-2	Convert the various molecule through organic green synthesis.	20%
CO-3	Apply the various experimental methods for estimation.	20%
CO-4	Explain the role of various reaction in laboratory demonstration.	10%
CO-5	Describe the role of green chemistry for the synthesis of organic molecules.	20%
CO-6	Deduce the structure of organic molecule on based of various spectral techniques.	10%

- https://www.library.qmul.ac.uk/subject-guides/chemistry/useful-websites/
- https://blog.feedspot.com/chemistry_websites/

Teaching/Exam Scheme

M.Sc. Sem. IV

w.e.f.: 1st April'22

Sr. No.	Course Code	Category of course	Course title	Hours Per week		Tota l con. hrs.	Cre dits	E	M	I	V	Total Mark s
				L	P							
1	MC3208	Core Course	Research Methodology	-	-	-	3	-	-	30	70	100
2	MC3209	Core Course	IDP/UDP	-	32	32	16	-	-	60	140	200
3	MC3210		Students seminar based on Research article	-	-	-	3	-	-	30	70	100
			Total	-	32	32	22	-	-	120	280	400

- > IDP = Industry Defined Project
- > UDP = User Defined Project

MASTER OF SCIENCE

Course Code: MC3208

Course Name: Research Methodology

Semester: IV

Type of course: Core Course

Prerequisite: An overview of research methodology including basic concepts employed in quantitative and qualitative research methods. Includes computer applications for research

Rationale: Research methods as they apply to the higher education field of study. It provides a macro perspective of the methods associated with conducting scholarly research in all follow-on core, elective, quantitative and qualitative courses; and the doctoral dissertation.

Teaching and Examination Scheme:

Teaching Scheme			Credits		Total			
L	T	P	С	Theory Marks		Theory Marks Practical 1		Marks
				ESE (E)	PA (M)	ESE (V)	PA(I)	
0	0	0	3	_	-	70	30	100

Sr. No.	CONTENT	Total Hrs.
	SECTION-A	
1	FOUNDATIONS OF RESEARCH Meaning, Objectives, Motivation, Utility. Concept of theory, empiricism, deductive and inductive theory. Characteristics of scientific method – Understanding the language of research – Concept, Construct, Definition, Variable. Research Process	08
2	PROBLEM IDENTIFICATION & FORMULATION Research Question, Investigation Question, Measurement Issues, Hypothesis, Qualities of a good Hypothesis, Null Hypothesis & Alternative Hypothesis. Hypothesis Testing – Logic & Importance	08
3	RESEARCH DESIGN Concept and Importance in Research – Features of a good research design – Exploratory Research Design – concept, types and uses, Descriptive	08

_								
		Research Designs – concept, types and uses. Experimental Design:						
	Concept of Independent & Dependent variables							
SECTION-B								
	4	SAMPLING	08					
		Concepts of Statistical Population, Sample, Sampling Frame, Sampling						
		Error, Sample Size, Non Response. Characteristics of a good sample.						
		Probability Sample – Simple Random Sample, Systematic Sample,						
		Stratified Random Sample & Multi-stage sampling. Determining size of						
		the sample – Practical considerations in sampling and sample size.						
	5	DATA ANALYSIS	10					
		Data Preparation – Univariate analysis (frequency tables, bar charts, pie						
		charts, percentages), Bivariate analysis – Cross tabulations and Chi-square						
		test including testing hypothesis of association. Uses of various software						
		tools for chemistry.						
	6	INTERPRETATION OF DATA AND PAPER WRITING	06					
		Layout of a Research Paper, Journals in Chemistry, Impact factor of						
		Journals, When and where to publish? Ethical issues related to publishing,						
		Plagiarism and Self-Plagiarism.						

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks								
R Level	U Level	A Level	N Level	E Level	C Level			
10	15	15	10	10	10			

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

- 1. Research Methods Donald Cooper & Pamela Schindler, TMGH, 9th edition.
- 2. Business Research Methods Alan Bryman & Emma Bell, Oxford University Press.
- 3. Research Methodology C.R.Kothari
- 4. Wilkinson. T.S. & Bhandarkar. P.L. Methodology and Techniques of Social Research, Himalaya Publishing House, Mumbai.
- 5. Panneerselvam. R. Research Methodology, Prentice Hall of India, New Delhi, 2004.
- 6. Green, P.E., et al., Research for Marketing Decisions, 5th ed., Prentice-Hall of India, New Delhi, 1994. 4. Young, P.V., Scientific Social Survey and Research, Prentice Hall, 1949.

- 7. Kothari.C.R. Research Methodology Methods & Technology, New Age International Publisher, New Delhi 6. Gupta, S.P. Statistical Methods, Sultan Chand and sons, 1999, New
- 8. Gupta, C.B., An introduction to Statistics Methods, Vikas Publishing House, 1998, New

Course Outcomes: After completing the course students will be able to

Sr. No.	CO statement	Marks % weightage
CO-1	Demonstrate knowledge of research processes (reading, evaluating, and developing);	20%
CO-2	Perform literature reviews using print and online databases;	20%
CO-3	Employ knowledge for citations of print and electronic materials;	20%
CO-4	Identify, explain, compare, and prepare the key elements of a research proposal/report;	10%
CO-5	Define and develop a possible research interest area using specific research designs.	20%
CO-6	Describe sampling methods, measurement scales and instruments, and appropriate uses of each.	10%

- https://www.library.qmul.ac.uk/subject-guides/chemistry/useful-websites/
- https://blog.feedspot.com/chemistry_websites/